
Eur. Phys. J. C 46, 247–254 (2006) THE EUROPEAN
PHYSICAL JOURNAL C

Digital Object Identifier (DOI) 10.1140/epjc/s2006-02483-0

Lorentz symmetry breaking and planar effects
from non-linear electrodynamics
M. Botta Cantcheff1,2,a
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Abstract. We propose a modification of standard linear electrodynamics in four dimensions, where effective
non-trivial interactions of the electromagnetic field with itself and with matter fields induce Lorentz vio-
lating Chern–Simons terms. This yields two consequences: it provides a more realistic and general scenario
for the breakdown of Lorentz symmetry in electromagnetism and it may explain the effective behavior of
the electromagnetic field in certain planar phenomena (for instance, Hall effect). A number of proposals for
non-linear electrodynamics is discussed along the paper. Important physical implications of the breaking of
Lorentz symmetry, such as optical birefringence and the possibility of having conductance in the vacuum are
commented on.

1 Introduction

It is often claimed that the correct description of many
electromagnetic phenomena in three dimensions is pro-
vided by the Maxwell–Chern–Simons theory [1, 2]. It is
believed to describe electromagnetic interactions in very
thin films. However, if we accept that three-dimensionality
is an effective circumstance (i.e., the world is four dimen-
sional, but the physics of a certain phenomenon would
be approximately described by a field theory on a three-
dimensional manifold), a fundamental question arises:
what is the mechanism that explains this behavior of the
electromagnetic field from the four-dimensional point of
view?
In most physical situations modelled by a planar the-

ory, where a Chern–Simons term appears, the gauge field
A is considered as an effective one, describing other col-
lective, more fundamental, degrees of freedom (fermionic
or bosonic) in some material medium [3, 4]. However, they
all suppose a three-dimensional manifold as its starting
point [3–5]. Actually, the appearance of this term is badly
motivated in planar models which effectively describe elec-
tromagnetism in thin material films. Furthermore, a di-
mensional reduction scheme from the ordinary Maxwell
theory, interacting with charged matter in the usual way,
is also hard to be argued. If we accept that at a macro-
scopic scale (i.e., the scale of electromagnetic interactions)
the space-time is effectively four-dimensional, even in the
context of electrodynamic planar phenomena, any com-
pactification scenario is not well justified as starting point.

a e-mail: botta@cbpf.br

A few years ago, a modification of Maxwell’s electro-
magnetism in four dimensions has been proposed which
considers a kind of Chern–Simons term in the action,∫
dx4 Vα ε

αβµνAβFµν , where Lorentz symmetry is ex-
plicitly broken by an external vector, V µ [6]. There is
a growing literature considering this proposal seriously,
and exploring the possible origin and consequences of this
approach [7].
In fact, in the present approach, we emphasize that

broken Lorentz symmetry (abbreviated as BLS) would
be crucial to obtain a Chern–Simons term in some three-
dimensional effective model (since it is automatically in-
duced from a BLS term, as will be explained in Sect. 1
of this paper). Reciprocally, the physical contexts for
which an effective planar model with a Chern–Simons term
is more appropriate [1] must dictate precisely what are
the ways in which BLS should appear in a fundamen-
tal 4- dimensional electrodynamics. This is the paradigm
which, together with the assumption of Lorentz invari-
ance, motivates our construction. The model we are going
to build up here assumes a non-linear (but relativistic)
electrodynamics which induces a modification of this kind
(BLS) of the standard Maxwell theory. Furthermore, it is
shown that BLS does not need to be introduced by hand ,
but it can naturally appear in some realistic physical situa-
tions. For example, in the presence of external fields and/or
when non-uniform distributions of charged matter are con-
sidered (and consequently, a CS term will be induced in an
embedded hyperplane).
There are additional theoretical motivations for our

construction. Recent works [8, 9] consider BLS with very
interesting consequences on certain aspects of condensed
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matter phenomena, such as the proposal of a non-minimal
coupling in order to describe the quantumHall effect. How-
ever, the vector V is identified by hand with the external
magnetic field, orthogonal to the Hall sample1. In this pa-
per we consider these observations and accomodate them
as natural consequences of a more fundamental non-linear
electrodynamics theory, in a general and elegant way, aim-
ing that such ad hoc interpretations are not necessary.
This work is organized as follows: in Sect. 2, we define

our proposal in general, writing down the basic postulates
for nonlinear electrodynamics. In Sect. 2, we extend these
assumptions to theories in which the electromagnetic field
interacts with other charged ones. In Sect. 3.1, we define
a non-linear coupling to generic matter and argue on the
appearance of BLS terms and non-minimal couplings. In
Sect. 4, we discuss the Hall effect in terms of non-linear the-
ories. In Sect. 5, we carry out BLS with examples of non-
linear theories.We present our final observations in Sect. 6.

2 Non-linear electromagnetism and BLS

It appears to be difficult to work with a theory whose form
is unknown. However, we propose here a technique that al-
lows (under a few simple and general assumptions) one to
evaluate the effective action around certain specific back-
ground solutions without the knowledge of the full non-
linear theory. The assumptions are as follows.

(I) Assume that electromagnetism is described by non-
linear equations. Thus, the LagrangianLNL is a gen-
eric (in principle, non-quadratic), relativistically in-
variant, functional of a vector field Aµ (and Fµν ≡
2∂[µAν])

2.
(II) There are non-trivial, stable solutions (A0µ , F

0
µν) of

the classical equations of motion, such that small
field perturbations (i.e. ‖Fµν −F 0µν‖ � ‖F

0
µν‖ ) are

properly described by the second order expansion of
the action about these background solutions:

SL[Aµ] =S[A
0]+

∫
dxdy(Aµ−A

0
µ)(x)

×

(
1

2

d2S

dAµ(x)dAν(y)

∣
∣
∣
∣
A0

)

(Aν −A
0
ν)(y) .

(1)

In particular F 0µν ≡ 0 is a solution, and linearization
around this one coincides with the standardMaxwell
theory.
Clearly, the quantization of this theory in the saddle
point approximation is contemplated in this state-
ment because quantum fluctuations are supposed to
be much weaker than the classical background fields.
So, in order to quantize the electromagnetic field and
find out the photon spectrum, one considers the free
theory (1).

1 And, in [8], BLS is used to describe the Pauli coupling [11].
2 We neglect the symmetric derivatives because we only want
to consider degrees of freedom corresponding to a spin-1 boson.

(III) The linearized theory around F 0µν = 0 has the usual
U(1)-gauge invariance Aµ→Aµ+∂µα.
This assumption is motivated in the original ref-
erence [6] where gauge invariance of electrodyna-
mics is strongly relaxed (a mass term is considered
within observable limits). Here we admit this pos-
sibility, but we require that these limits depend of
the strength of the background field. So, when it is
weak (F 0µν → 0), gauge invariance shall be recovered
in order that the theory agrees with the full Maxwell
theory in ordinary physics.

Now, we are going to show that these simple assump-
tions on the unknown non-linear theory are sufficient to
recover the behavior that is relevant for us. The linearized
effective action has the general form

SL[Aµ] =

1

4

∫
d4x[Cαβµν1 FαβFµν +C

αµν
2 AαFµν +C

µν
3 AµAν ] ,

(2)

where the tensorsCi do not depend explicitly on the space-
time point, being only algebraic functionals of the back-
ground fields, F 0αβ , A

0
µ. The crucial observation, over which

our construction stands, is that the tensors Ci are typically
non-trivial, which leads to BLS.
As a first example, a very simple gauge invariant non-

linear theory for pure electromagnetism is

L�[Aµ] =

−
β

4
FµνF

µν +
1

4
�(F 2) εαβµνFαβFµν . (3)

By expanding this theory about a non-constant solution,
F 0µν(x), we get a BLS theory where an external vector Vµ
appears, given by Vµ =−

1
4∂µ�(F

2
0 (x))

Now, because we wish to discuss the consequences of
this approach in some specific realistic scenario with phys-
ical interest, let us consider an example where the back-
ground solution consists of an uniform magnetic field,
Bµ ≡ εµναβtνF 0αβ (where tν = ∂νt is a unit timelike four-
vector and t is the time coordinate in the rest frame), and
the other components of Fµν vanish. Then, clearly, Ci[F

0]
are algebraic functions of the vectorsBµ, tν , the space-time
metric tensor ηµν , and the Levi–Civita tensor εµναβ . In
order to simplify the analysis we assume that these ten-
sors do not depend on tν . So, by seeking all the possible
independent combinations, the most general form for them
reduces to:

Cαβµν1 =−β(B2)hαµhβν

Cαµν2 = �(B2)εµναβBβ

Cµν3 =m(B
2)ηµν +k(B2)BµBν , (4)

where, for convenience, we have expressed hµν = ηµν −
κ(B2)B−2BµBν . Other possible combinations in C1 do
not contribute due to the antisymmetry of F , and many
other ones (for instance εµναβAα∂βFµν), were dropped out
because they may be absorbed into C2 and/or C3, or con-
tribute to boundary terms (e.g εµναβFµνFαβ). There also
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appear terms depending on ∂µA
µ or kµA

µ (for some vector
kµ) but they are not gauge invariant and could be consid-
ered to be part of the gauge-fixing sector of the theory.
Gauge invariance of SL implies additional restrictions

on these general combinations: C3 must be antisymmetric,
and therefore C3 =m = k = 0. Furthermore ∂µC

αµν
2 = 0

implies ∂[µ(�B)ν] = 0 which is satisfied for a constant Bµ.
Finally, by virtue of assumption (II), the coefficients must
satisfy �(0) ∈ Re , h(0) = 0.
So, the resulting gauge invariant part of the Lagrangian

is precisely the Maxwell–CS theory in four dimensions

LL[Aµ] =−
β

4
FµνF

µν +
1

4
(�Bα) ε

αβµνAβFµν (5)

proposed by Carroll, Field and Jackiw [6]. This theory
breaks Lorentz symmetry for the external background vec-
tor Vµ = �Bµ, which shows that the identification specu-
lated in [9] could be derived in a framework of this type.
Let us briefly explain why the Chern–Simons action,

automatically appears in the BLS action when we search
for planar features (thus turning dimensional reduction un-
necessary, as commented in the introduction). In fact the
BLS action is actually a CS theory in (2+1)-dimensions
embedded in (3+1)-dimensions, and by itself, it does not
encode any information on the field-dependence in the di-
rection of the external (for instance, space-like) vector V : if
z is its affine parameter, i.e. V = ∂

∂z
, then we get a foliation

of the spacetime in (2+1)-hypersurfaces Σz parametrized
by z (and V is orthogonal to each hypersurface3). There-
fore, the BLS action may be written as

SBLS =

∫ L

0

dz SCS[A(z), Σz] , (6)

where

SCS[A(z), Σz] =

∫

Σz

A(z)∧dA(z) , (7)

is the Chern–Simons action for the 1-form gauge field A(z)
on a three-dimensional manifoldΣz. Thus, the dependence
of this field on the parameter z is not determined by this
theory. It only has to satisfy usual convergence conditions.
For example, if the interval (0, L) extends to (−∞,+∞),
A(z) has to be an square-integrable function (A ∈L2(Re)).
In this sense, we can interpret the BLS action simply as
a sum of Chern–Simons theories on manifolds Σz.
Consequently, at the low-energy limit of the electro-

magnetic field, the Maxwell term in (5) is negligible for the
planar dynamics and then we get a planar Chern–Simons
theory without any dimensional reduction (which would
have to be further justified4). Notice that this describes an

3 Notice that if the space-time (or the space-time region con-
sidered in the integration) is simply connected, the condition of
existence of this z-coordinate is equivalent to gauge invariance
of the action, namely dV = 0.
4 Alternatively, a dimensional reduction scheme may be con-
sidered [8] when V does not coincide with the coordinate of
reduction, but in this case, the part of the action which depends
on derivatives in the V -direction is lost.

eventual situation of confinement of the electromagnetic
field (photon) into a (2+1)-manifold, which does not re-
sult from a constraint of the charged matter into a planar
sample.
Let us point out that away from the low energy regime

(i.e., when the Maxwell term contributes), there could also
be a totally planar phase, where the contribution of the
term V µFµν to the action would become negligible. Since
the coefficients β, θ, h, ... depend on the particular non-
linear theory, the condition for this is that hµν is the flat
2+1-metric hµν = ηµν −B−2BµBν for some value of the
background field. For instance, the function κ(B2) could
go to 1 as B2→∞. In this case we would not only have
BLS, but exact planar Maxwell–Chern–Simons electromag-
netism in the presence of a strong background field Bµ. In
Sect. 4 we argue on a planar projection, in the context of
the Hall effect.
It is interesting to notice that this BLS-term which, as

shown here, is nothing but a genuine Chern–Simons term
(in (2+1) dimensions). It may also be obtained (see refer-
ence [10]) by considering the effective action of a standard
(Lorentz and CPT invariant) gauge theory in four dimen-
sionalMinkowski space-time, such that a spatial dimension
is taken to be compact (∼M ×S1). Then, by integrat-
ing out the chiral fermions while keeping gauge invariance,
a Chern–Simons theory on the uncompactified part (three-
dimensional) of spacetimeM appears.
This is remarkable because, despite what was said in

the last paragraph, we are not considering non-trivial
space-time topologies. This opens the possibility of ob-
taining such a term, alternatively, in a more standard
electrodynamics theory in which the background would
have non-trivial topology. However, as it happens in all ap-
proaches based on compactification of the space-time, it is
not clear what is the physical reason behind this compact-
ification.

3 Non-linear electrodynamics:
BLS in matter backgrounds

If we consider non-linear electrodynamics involving pos-
sible non-linear couplings between charged fields and the
electromagnetic potential, BLS could also appear due to
special (background) distributions of charged matter (thin
distributions, for instance).
So, the possibility we are going to present here shall

provide a more realistic phenomenological context in which
BLS could appear. Up to now, BLS was most related
to astrophysical situations [6, 12, 13] or very high energy
physics [14], rather than to the presence of matter or back-
ground fields in general. In the present approach, we wish
to introduce this point of view.
Thus, one must assume a total (non-linear) action for

electrodynamics

SED = S[A,F, ψ̄, ψ, ϕ, ϕµ] , (8)

where ψ̄, ψ are fermionic charged fields and ϕ,ϕµ describe
bosonic matter fields with spin 0 and 1, respectively. We
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will not make here any hypothesis on the nature of these
fields. However, one experimentally knows that electro-
magnetism in the vacuum is accurately described by the
observedMaxwell theory. Thus, the only possibility of hav-
ing some deviation at some observable level is, perhaps,
near or in the interior of certain special distributions of
matter (e.g. thin films)5. Therefore, these fields could be
interpreted as effective ones, describing perhaps, collec-
tive degrees of freedom associated to the material medium.
So, for example, these fields could be describing phonons,
which are believed to be coupled to the electromagnetic
field in material media, or some condensate of fundamen-
tal charged fields (this is the case of the Cooper-pairs,
which should be important to describe the superconductiv-
ity phenomena).
So, from now on, we assume that the postulates (I, II,

III) extend to theories in which the electromagnetic field in-
teracts with other ones .
Next, let us assume, for simplicity, a background distri-

bution of a charged scalar field, ϕ0(x). Following the pro-
cedure established in Sect. 1, arguing the validity of equa-
tion (1), we also get tensors Ci = Ci(ϕ0, ∂µϕ0, ∂µ∂νϕ0,
...) as in expression (4). We assumes, for simplicity, that
the degrees of freedom involved in the electromagnetic in-
teraction are precisely the ones corresponding to a stan-
dard charged spin-0 boson. Also, to avoid the appearance
of ghosts, second (or higher) order derivatives will not be
considered in the action. So, we get Ci = Ci(ϕ0, ∂µϕ0).
In particular, the contribution to BLS is given by C2 (or
equivalently C1), which in general reads

Cαµν2 = εµναβ∂β�(ϕ0)

= �′(ϕ0)ε
µναβ∂βϕ0 (⇒ Vµ =∇µ�) . (9)

Thus, the most general linearized gauge invariant La-
grangian for electromagnetism in a background ϕ0 is

Leff[Aµ] =−
β(ϕ0)

4
FµνF

µν +
�(ϕ0)

4
εαβµνFαβFµν .

(10)

Clearly, for nearly uniform distributions (ϕ0 ≈ cte), the
second term turns out to be a boundary term, and we
recover the standard Maxwell theory without BLS as
expected.
It is not difficult to build up a toy model for electro-

magnetic field interacting with bosonic spin-0 matter field
such that this theory is obtained by linearization. For ex-
ample, one could keep a non-self-interacting electromag-
netic field and encode the non-linearity in the interaction
term as inLED[Aµ, ϕ] =−

1
4FµνF

µν+ �(ϕ)4 ε
αβµνFαβFµν+

Lϕ(∂αϕ,ϕ). Further expanding around a solution ϕ0(x)
(and F 0αβ) of the equations of motion

6 one recovers the free
theory (10).
This approach should be helpful to model electrody-

namical phenomena (e.g. superconductivity) in material

5 Or in presence of external electromagnetic field in a non-
linear theory, as argued in the first section.
6 It may be even a vacuum solution.

media, where non-homogeneities, as some preferred struc-
ture of planes described by the gradient ∇�, are sup-
posed to be important. In particular, notice that a BLS
term would appear in the interface between two different
material media if we consider Goldstone/Higgs-like La-
grangians Lϕ, and different vacuum expectation values in
each medium (domain). This proposal will be explored in
more detail in a forthcoming work.
Next, we present another example where electromag-

netism is coupled to vectorial bosonic matter and exhibits
spontaneous breaking of Lorentz symmetry7. This is a par-
ticular case of non-linear electrodynamics where the back-
ground vector Vµ corresponds to the vacuum configuration
of the field ϕµ.

L[Aµ, ϕµ] =−
β

4
FµνF

µν +
1

4
ϕαAβε

αβµνFµν +
λ

4
GµνG

µν

+V (ϕµϕ
µ) , (11)

where V is a non-linear function and

Gµν ≡ ∂µϕν −∂νϕµ . (12)

This is notU(1)-invariant but it is Lorentz invariant.When
this symmetry is spontaneously broken, gauge invariance is
restored in the action for the free fields.
In the vacuum state for this field, the kinetic term van-

ishes G2 = 0, and the maximally symmetric solution cor-
responds to Gµν = 0. Similarly we have Fµν = 0. A local
solution of this is

ϕ0µ = ∂µϕ0 , A0µ = 0 . (13)

If V ′′|0 < 0, we have a minimum and ϕ0µ(x) = ∂µϕ0 must
be obtained as a non-trivial solution of the non-linear dif-
ferential equation V ′( ∂µϕ0 ∂

µϕ0 ) = 0. Substituting these
vacuum state configurations in expression (1) we obtain
the non-Lorentz invariant (but gauge invariant8) theory:

L[Aµ, ϕµ] =−
β

4
FµνF

µν +
1

4
(∂αϕ0)Aβε

αβµνFµν

+
λ

4
GµνG

µν +
1

2
V ′′|0 (ϕµ−∂µϕ0)

2 .

(14)

3.1 General action for matter and non-linear coupling
to electromagnetism

We consider here a general action for the matter fields
with the standardminimal coupling to the electromagnetic
field, but with an additional non-linear coupling term. We
shall argue that when these sources satisfy an obvious
physical requirement (existence of rest charges), BLS is
generated in our approach. The proposed non-linear coup-
ling is specially important for our purposes, and it presents

7 A closely related example was given in [15].
8 The U(1) gauge invariance is ϕµ→ ϕµ, ϕ→ ϕ, Aµ→Aµ+
∂µα.
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another important property related with a non-minimal
coupling, recently worked out with very interesting physi-
cal consequences [8].
Let us propose the following action for fundamental

electrodynamics:

S =

∫
dx4

(

−
β

4
FµνF

µν +k(εα�στj
�Fστ )(εαβµνAβFµν)

+Aµj
µ

)

+Ssource[ψ̄, ψ, ϕ, ...] . (15)

Remarkably, this theory satisfies assumptions I, II and III.
In particular, if the minimally coupled theory

∫
dx4 Aµj

µ

+Ssource is gauge invariant, then (15) will satisfy III.
As anticipated, we do not give here any explicit free

dynamics for the sources (which determine jµ), but we
enunciate a very natural physical condition which jµ must
satisfy as an additional assumption:

(IV) (Existence of rest charge): the action Ssource is
such that the equations of motion derived from (15)
admit a background solution where the source is
a charge at rest. In other words, there exists a classi-
cal solution where the current is

jµ = q tµ , (16)

where q is a function of the spatial coordinates.

When (16) is imposed, a solution F0 of the equations of
motion exists. So, we get εα�στ j

�Fστ0 = qBα, where Bα is,
by definition, the magnetic field in the rest frame. Thus, it
is clear that when we consider expansion (1), there appears
a BLS contribution:

SBLS =

∫
d4x (qk Bα) ε

αβµνAβFµν , (17)

where the external vector is proportional to the back-
ground magnetic field, as argued in Sect. 1; see (5). As we
can see, this is specially relevant to the study of the Hall
effect (Sect. 4).
Notice, in addition, that another term appears from

expansion (1) which remarkably coincides with the non-
minimal coupling introduced in [8]:

SNM =

∫
d4xVαε

αβµν(j+J)βFµν , (18)

where J is a current describing a perturbation of the source
(16). The BLS vector is V α = εαβµνA0βF0µν . As we will
see in Sect. 4 (31), if the non-linear theory is not gauge
invariant (but satisfies III), Vµ may coincide with the direc-
tion of Bµ even for a background solution F0 = constant as
speculated in [9].
As we mentioned above, these non-minimal couplings

have been exhaustively studied also in the context of BLS,
but with a V that has not been generated in the context
of the model [8]. Moreover, this opens the possibility to ex-
plain the non-minimal Pauli-like coupling [11].

Let us briefly mention that there is another similar the-
ory with a non-linear coupling, which is gauge invariant
from the beginning (if Ssource is also):

S =

∫
dx4

(

−
β

4
FµνF

µν +k(εα�στj
�Fστ ) (εαβµνjβFµν)

+Aµj
µ

)

+Ssource[ψ̄, ψ, ϕ, . . . ] . (19)

By repeating the above procedure (to expand around solu-
tions (16)), there appear terms in the Lagrangian corres-
ponding precisely to non-minimal or Pauli coupling (pro-
portional to Bαε

αβµνJβFµν). This presents the main prop-
erties of the model proposed in [9] in 2+1 dimensions (in
Sect. 4, it will become clearer how the planar confinement
may appear in a four-dimensional theory of this type).

4 Planar electromagnetism and Hall effect

The quantum Hall effect is the phenomenon of a longi-
tudinal electric field yielding a transverse current in the
presence of an external perpendicular magnetic field Bµ.
The effective physics of this phenomenon is described by an
effective Maxwell–Chern–Simons (or pure Chern–Simons)
theory on a plane perpendicular to Bµ [3–5]. However, as
discussed in the introduction of the paper, such description
is not clearly well argued from a four-dimensional view-
point.
In these models, the vector field is the so-called “statis-

tical field” which encodes the effective dynamics of many
charged bodies in the Hall sample and part of the pure elec-
tromagnetic field Aµ. Furthermore, an additional external
electromagnetic field A0µ is considered in order to describe
the field Bµ [4].
In the present framework, we are able to reproduce

most of this behavior even at the classical level without
making any reference to the microscopic structure/dyna-
mics of the charged matter in the conductor, but based on
a possible non-linearity intrinsic to electrodynamics.
In our approach, the presence of an external magnetic

field automatically implies the appearance of a BLS term
(5), and no kind of dimensional reduction is necessary to
obtain a pure Chern–Simons term in the plane of conduc-
tion. It may be obtained from (5) and, consequently, from
a non-linear theory of electromagnetism, by an elegant and
very simple procedure.
Notice that Ohm’s law, J i = σijEj is usually presented

as an effective (constitutive) relation arising from the col-
lective processes that occur in a conducting medium. They
are used to allow the Maxwell equations to describe the
propagation of electromagnetic fields in material media,
and they do not follow from fundamental electrodynamics.
Remarkably, in the class of theories that we are proposing
here, this relation may be obtained from the equations of
motion and it does not need be imposed by hand.
Let us assume the existence of an uniform background

magnetic fieldBν in a Hall sample placed in a regionRH of
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the spacetime. Consider also a non-linear theory such that,
by the procedure described above, the electromagnetic sec-
tor minimally coupled with an external source reads

S =

∫

RH

dx4 (LEM+AµJ
µ) , (20)

where LEM is given by (5) (in Sect. 3 we proposed a realiza-
tion of this (see (17) where the coefficient � may be identi-
fied with kq)) and Jµ is the electric current that should be
produced in the Hall sample. This description in which Bµ
is treated as a fixed background field is actually appropri-
ate, since in the QHE, typically |B| ∼ 1 T.
Then, the equation of motion derived from this action is

β

2
∂νFνµ =

1

2
�(B2)Bν εµναβF

αβ−Jµ ; (21)

thus, for a nearly constant electromagnetic field F (or for
low energy), the LHS of this equation is negligible and we
can write

1

2
�(B2)Bν εµναβF

αβ = Jµ . (22)

By contracting this equation with Bµ, one gets

JµB
µ = 0 , (23)

which is the condition for planar confinement, expected to
be valid in the context of the Hall effect.
Considering the spatial components of this equation,

we obtain that the current flux will be deviated by the elec-
tric field according to the equation:

1

2
�|B| εijE

j = Ji . (24)

So, the Hall conductance can be expressed in terms of pa-
rameters of the non-linear theory and as a function of Bµ:

σH =
1

2
|B| � , (25)

and the rest charge density is

J0 =
1

2
�Bµbµ , (26)

where bµ ≡ εµναβtνFαβ is the fluctuation of the magnetic
field (i.e., the total magnetic field is Bµ+ bµ).
Finally, according to assumption II, viewed as a saddle

point approximation, one finds that, to low energies, the
Chern–Simons theory (22) effectively describes the Hall ef-
fect, and σH results to be quantized in fractions of e

2/h
in the usual way (see the standard arguments in [3, 4, 16]).
Actually, we can give here a simple argument for it: let us
assume that the magnetic flux9 through the total sample
area10, ϕ=Nϕ =

∫
SH
b · da is an integer (in units in which

9 Due to the dynamic part of the magnetic field b.
10 As we explained in the end of Sect. 2, one can take the re-
gion RH to be SH× (0, L)×Re where SH is the sample plane
(two-dimensional), and L may be arbitrarily small.

e= h̄ = 1 [4]). On the other hand, the number of charges
must be Ne=

∫
SH
J0da. Thus, substituting these two ex-

pressions into (26), and using that B ·b da= |B|b · da, we
get

N =

(
1

2
�|B|

)

Nϕ = σHNϕ⇒ σH =
N

Nϕ
. (27)

So, if each electron is attached to an integer number of
flux units [17], σH is the inverse of this number. In a forth-
coming work we shall analyze this result by considering
quantum aspects of the electric charges and the conductor.
The focus here has been on the description of the behavior
of the electromagnetic field in this situation.
The above discussion is especially meaningful for the

non-linear models which involve matter fields, as presented
in the previous section (where � is given by the background
matter fields), with Ohm’s law appearing naturally as ex-
pected and having a natural interpretation. However, let us
point out that an interesting question arises here: “is it pos-
sible to have a vacuum contribution to the Ohm conductiv-
ity law out of material media?”. If pure electromagnetism
with �(B2) �= 0 exists11, then there exists an intrinsic con-
tribution of the electromagnetic field in itself to Ohm’s law
and consequently, a vacuum contribution (due to the elec-
tromagnetic background) to the conductance12.
The conventional approach to the quantum Hall effect

(QHE) says that it only occurs in conducting materials.
The vector potential is considered as the sum of an ef-
fective field, representing the collective degrees of freedom
of many interacting charged bodies in the conductor, plus
the pure electromagnetic vector potential. In our approach,
these degrees of freedom are encoded in the other fields
(here referred to as “matter fields”) but furthermore a ma-
terial medium would not be required to obtain this effect, if
pure non-linear theories exist. In the next section we ana-
lyze an example of this situation.

5 Non-linear toy models

In this section, we discuss some examples of non-linear
electrodynamics which exhibit BLS.
First, let us analyze the case of pure electromagnetism,

where BLS can occur without matter fields, due to the
presence of an intense magnetic field. The following ex-
ample is the most interesting for us since it satisfies all the
assumptions I–IV and is similar to the example discussed
in a generic way in Sect. 1. We consider the non-linear the-
ory for pure electromagnetism as being given by

SNL[Aµ] =

∫
dx4
(
β

4
FµνF

µν +
µ

4
WµναW

µνα

)

,

(28)

11 In other words, if there is a classical solution to the non-
linear theory such that the matter fields vanish and Bµ(x) =
constant �= 0 in some region RH.
12 Given a background magnetic field Bµ, then, in these theo-
ries, the external sources Jµ and the electromagnetic field Fµν
will be related by (24) and (26).
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where

W = F[µνAα] . (29)

Let us consider the following ansatz for a classical solution:

A0µ ≡ εµναβx
νBαtβ+ ctµ , (30)

where Bµ and c are constant. We can directly verify that


W0µ ≡

Wµ[A0] =−cBµ , (31)

where 
Wβ ≡ ε
µνα
β F[µνAα]. To verify that this is actually

a solution of the theory (28), we observe that the equations
of motion derived from this action are:

∂µFµν ∝A
α∂µWµνα . (32)

Then, (30) is a trivial solution since F0,W0 are constant.
Linearization of this theory around this solution gives
gauge-dependent terms, Maxwell-like terms (as in the
model (5)), and a BLS contribution given by

SBLS =

∫
dx4
µ

2

W0 βε

βµναWµνα

=−

∫
dx4
µ

2
cBβε

βµναFµνAα , (33)

as we expected.
Notice that the theory defined by (28) is not gauge

invariant. Assumption III asserts that linearized electro-
magnetism about F = 0 must be gauge invariant, but this
is not necessarily true for the full non-linear theory. How-
ever, we can construct a non-linear gauge invariant the-
ory with a similar solution, assuming a non-linear coupling
with matter fields.
A similar non-linear theory of electromagnetism coupl-

ed to a scalar field is

SNL[ϕ̄, ϕ,Aµ] =
∫
dx4
(
1

2
Dµϕ̄Dµϕ+

β(|ϕ|2)

4
FµνF

µν +
µ

4e2
�̄µνα�

µνα

)

(34)

where

�µνα = F[µνDα]ϕ, �̄µνα = F[µνDα]ϕ̄ (35)

and

Dµϕ= [∂µ− ieAµ]ϕ , Dµϕ̄= [∂µ+ieAµ]ϕ̄ . (36)

This theory is invariant under local U(1) gauge transform-
ations:

ϕ′ = eiαϕ, ϕ̄′ = e−iαϕ̄, Aµ =Aµ− ie ∂µα (37)

As a particular case of (34), we could also consider

a non-standard scalar field whose dynamics is given in the
non-minimal interaction with the electromagnetic field,
namely the U(1)-invariant theory:

SNL[ϕ̄, ϕ,Aµ] =

∫
dx4
(
|ϕ|2

4
FµνF

µν +
µ

4e2
�̄µνα�

µνα

)

.

(38)

Notice that, due to (36), there clearly appears a term
µ ϕ̄ϕWµναW

µνα in the Lagrangian, like in (28). A solution
similar to (30) may be found in this theory but, in this case,
the second term can be eliminated by a gauge transform-
ation and carried to the ϕ sector. It is straightforward to
verify that a background configuration which yields a BLS
term (33) is

ϕ(t) = ζeicet, ζ = constant, c2µ= 1 ,

A0µ ≡ εµναβx
νBαtβ . (39)

This corresponds to a very special ϕ which could be inter-
preted as an auxiliary field in order to restore gauge invari-
ance rather than describing any sort of physical matter.

6 Remarks and outline

There are many reasons to believe that a fundamental the-
ory should be relativistic. We have seen that it is possible
to get BLS in the electromagnetic theory from some rela-
tivistic non-linear theory and to reproduce, consequently,
many features of planar electrodynamics. If electrodynam-
ics is indeed non-linear, many new physical effects should
be expected. In particular, optical activity (birefringence)
is a common feature of electromagnetism with BLS [13],
which is a general characteristic of the theories we are con-
sidering. Finally, let us remark that the mechanisms pro-
posed here to obtain BLS emphasizes more the possibility
of having BLS inmaterial media, where strong background
electromagnetic fields or special charge distributions may
occur or may be prepared in experiments.
This kind of analysis might be performed in more gen-

eral contexts, like non-Abelian gauge theories. In particu-
lar, it would be interesting to pursue a similar approach
in gauge formulations of gravity. Our point of view would
be in sharp contrast to the standard one on this sub-
ject, where BLS appears at very large scales, related to
cosmic anisotropies [6, 12, 13], or in the context of super-
string physics [14]. Such anisotropies of matter at large
scale should give a place to BLS due to a non-linear
effective electrodynamics in the way we have proposed
here.
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